
Laurie H. Levinson, Mark G. Potapczuk, and Pamela A. Mellor
Lewis Research Center, Cleveland, Ohio

Software Development Processes Applied to
Computational Icing Simulation

NASA/TM—1999-208898

January 1999

AIAA–99–0248

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of peer-
reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
data bases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at (301) 621-0134

• Telephone the NASA Access Help Desk at
(301) 621-0390

• Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076

Laurie H. Levinson, Mark G. Potapczuk, and Pamela A. Mellor
Lewis Research Center, Cleveland, Ohio

Software Development Processes Applied to
Computational Icing Simulation

NASA/TM—1999-208898

January 1999

National Aeronautics and
Space Administration

Lewis Research Center

Prepared for the
37th Aerospace Sciences Meeting & Exhibit
sponsored by the American Institute of Aeronautics and Astronautics
Reno, Nevada, January 11–14, 1999

AIAA–99–0248

Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076
Price Code: A03

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22100

Price Code: A03

Trade names or manufacturers’ names are used in this report for
identification only. This usage does not constitute an official
endorsement, either expressed or implied, by the National

Aeronautics and Space Administration.

AIAA-99-0248

1
American Institute of Aeronautics and Astronautics

SOFTWARE DEVELOPMENT PROCESSES APPLIED TO
COMPUTATIONAL ICING SIMULATION

Laurie H. Levinson

Mark G. Potapczuk

Pamela A. Mellor

NASA Lewis Research Center

Cleveland, Ohio

The development of computational icing simulation methods is making the transition from the research realm to
commonplace use in design and certification efforts. As such, standards of code management, design, validation,
and documentation must be adjusted to accommodate the increased expectations of the user community with
respect to accuracy, reliability, capability, and usability. This paper discusses these concepts with regard to
current and future icing simulation code development efforts as implemented by the Icing Branch of the NASA
Lewis Research Center in collaboration with the NASA Lewis Engineering Design and Analysis Division. With
the application of the techniques outlined in this paper, the LEWICE ice accretion code has become a more
stable and reliable software product.

Introduction 1

The LEWICE ice accretion code has been supported
and maintained by the Icing Branch of the NASA
Lewis Research Center since the 1980’s. The original
code combined already existing elements, such as flow
field and trajectory calculations, with new elements
modeling the physics of ice growth to create an
updated system capable of predicting the evolution of
ice shapes on surfaces exposed to icing conditions.

Since this original icing simulation code was created
almost twenty years ago, the system has undergone
many changes.1,2,3 Features have been added, "bugs"
have been fixed, and adaptations to various hardware
platforms have been included. Much of this evolution
has been in response to requests from the user
community for enhanced features, greater reliability,
increased accuracy, and improved usability.

As the development of this code has become more
user-oriented, however, the use of the code by the icing
community has increased, and demands for even higher
levels of reliability and accuracy have also increased.
Most notably, the use of LEWICE as a substitute for or
augmentation to experimental testing continues to be a
desired goal of both the user community and the
regulatory authorities.

Copyright © 1998 by the American Institute of
Aeronautics and Astronautics, Inc. No copyright is
asserted in the United States under Title 17, U.S. Code.
The U.S. Government has a royalty-free license to
exercise all rights under the copyright claimed herein
for Governmental Purposes. All other rights are
reserved by the copyright owner.

In order to advance the code along the path toward
acceptance, the Icing Branch of the NASA Lewis
Research Center has embarked upon a rigorous
program of software re-engineering. This effort is
designed to make the code more robust and more easily
managed, and to more quantitatively identify its
capabilities over the range of operating conditions it is
designed to simulate. In order to accomplish this task,
however, it has been necessary to move beyond the
icing research domain itself and to incorporate, in
addition, software engineering knowledge and
expertise, as provided by the NASA Lewis Engineering
Design and Analysis Division.

The first step in this collaborative effort has been to
gain an understanding of standard software
development processes and techniques, and to carefully
consider the implications of these processes and
techniques relative to the icing research development
environment.

A standard software development process, as used
within many software-intensive disciplines, provides a
structured approach to the creation of computer codes.
This typically begins with the specification of the
planned system capabilities - or "requirements" - and
leads all the way through distribution and support of
the final software product. This type of approach is
generally more traceable than that used in a research
environment, and leads to better documented code.
However, it also requires a greater degree of oversight
and record keeping during the development effort.
Traditional methods for the development of research
codes have generally followed a more unstructured,
less formal process in order to allow maximum
flexibility to the developer. In this more informal

AIAA-99-0248

2
American Institute of Aeronautics and Astronautics

environment, frequently recommended software
development strategies for planning, documentation,
version control, and distribution of the final product
have not commonly been put into practice.

In the more formal environments established outside
the research realm, the development process, although
normally tailored to the specific needs of an individual
project, generally takes the form illustrated in Figure
1.4 The process begins with a basic description and
evaluation of user needs, then moves to a definition of
the planned system capabilities, specification of the
system structure, implementation into code, testing of
the code on several levels and, finally, distribution of
the final product and associated documentation.
Throughout the process, configuration management
techniques are applied to ensure traceability of all
changes that may be made over the course of the
development effort.

When considering the implications of this more
rigorous approach relative to the development of icing
simulation software, one of the outcomes is to highlight
the need for the specification of requirements. This is
especially true with respect to the ability of the code to
accurately predict the ice shape geometry being
simulated. The ability to define requirements such as
this clearly relies upon the existence of some
measurable standard relative to which the requirements
can be specified. At the present time, however, there
are no well-established acceptance criteria for ice shape
modeling. While several researchers have suggested
methods of comparing computed ice shapes to
measured ice shapes,5,6 there is as yet no agreement on
the best approach to use in order to perform this
comparison. Additionally, in none of these cases has
there been a determination of how these comparisons
should be assessed.

Furthermore, ice shape is just one characteristic that
could be evaluated with respect to an ice accretion
code. Other outputs that could be evaluated include
droplet impingement limits, collection efficiencies, and
heat transfer distributions. Acceptance of the software
is based, in part, upon satisfaction of requirements for
parameters such as these, and it is not entirely clear, at
this time, precisely how to define such requirements.
Similarly, it is not clear what additional requirements
are necessary in order to adequately specify the
essential characteristics of the system.

This paper will outline some suggestions for addressing
these and other issues through the use of standard
software engineering principles as applied to the
development and maintenance of the LEWICE
software system.

Figure 1. Typical Software Development Life Cycle

The Software Development Process

In order to better understand the issues involved in this
type of software process improvement initiative, it is
first necessary to understand the elements of a typical
software development process. In general, when
production software is created - where production
software is software one might purchase and assume to
be of high quality - the development process is
commonly broken down into a sequence of stages
through which the software progresses. Because these
stages cover the entire range of activities that are to
take place over the lifetime of the software system,
they are, together, referred to as the software
development life cycle. Within the software
community, there are a variety of accepted ways to
specify this life cycle. One typical formulation, the
waterfall life cycle as defined by the Institute of
Electrical and Electronics Engineers (IEEE), is shown
in Figure 1. This basic life cycle serves to illustrate the
process of creating a software system from its initial
conception on. It is often referred to as an ideal life
cycle since, in reality, there is rarely a clean
demarcation between the various stages, or a purely
sequential process, as is implied by the waterfall chart.
Instead, the software system is frequently built in
pieces, each of which follows the sequence of steps
defined, although not all at the same time. Some
portions may be better understood or may be
considered more critical than others, and so may be
built sooner. This incremental approach does not
invalidate the waterfall model, but rather implies that
there are many little waterfalls used instead.

AIAA-99-0248

3
American Institute of Aeronautics and Astronautics

To explain the various phases of the waterfall, the
process begins with an examination and determination
of what to do (concept exploration), followed by a
further refining of those ideas into specific capabilities
that are to be implemented (requirements). After these
capabilities have been identified, the next step involves
defining exactly how the required capabilities should
be implemented (design). This design is then used to
create the actual code for the system (implementation),
which is subsequently checked for proper operation
and corrected if and when errors are found (test). Once
this activity has been successfully completed, the
software is then placed in its normal operating
environment and checked again for proper execution
(installation and checkout). After this, the software is
considered to be an operational system which may,
over time, have a need for additional or revised
capabilities, resulting in changes to the existing system
(operation and maintenance). This operation and
maintenance phase continues for the remaining time
that the system is in use until, at the point where the
software is deemed to be outdated or its function no
longer needed, it is finally retired (retirement).

A more detailed view of this waterfall model is
provided in Figure 2, below. As indicated in the figure,
one of the artifacts produced during the requirements
phase is referred to as a Requirements Specification.
The purpose of this Specification is to document
detailed information about all required software system
capabilities. As such, it may well be the single most
critical document produced over the entire course of a
software project, as all downstream activities and
decisions ultimately flow out of the information
contained in this document. Among other things, the
determination that must be made at the end of a project
as to whether the completed system performs its
intended function can only be made in reference to the
system's specified requirements. While this may seem
self-evident, it is nevertheless a major weakness of
many software development projects.

Defining good requirements is actually quite difficult
and time-consuming. According to the IEEE,
requirements should be correct, unambiguous,
complete, consistent, verifiable, modifiable, traceable,
and ranked for importance and/or stability. They must
address functionality, external interfaces, performance,
desired quality attributes, and any mandated design
constraints.7 More often than not, however, vague
desires of what the software might do are all that a
programmer actually has to depend upon, and these
may not even be documented. Frequently, the
developer must make many design decisions based
upon faulty information and assumptions and, as a
result, may end up developing software that doesn’t do
what its users want at all. For these reasons, properly
addressing the specification of requirements is an

important step in the engineering of reliable, high
quality software systems.

In the next phase of the waterfall model, the design
phase, the primary output is a Design Document. The
purpose of this document is to specify the intended
software system structure and the associated relevant
design information. The information provided can take
the form of flowcharts or other pictorial representations
of the system structure, and may also include items
such as Program Design Language (PDL)
specifications, which provide an English language
description of an individual software module's logic.
Whatever the form of the documentation, the activities
performed and decisions made during this phase
provide the foundation for the coding effort that is to
take place during the implementation phase.
Neglecting to perform the necessary activities and to
properly address design issues generally results in code
which is put together in an ad hoc fashion, and a
system which is difficult to understand, test, and
maintain.

As a consequence, any attempt to bypass this part of
the development process will ultimately prove
detrimental to both project schedule and product
quality, although this fact may not be fully appreciated
by those without the requisite software systems
experience. The additional time required to code and
test a poorly designed system, however, will quickly
cancel out any short-term gains that may have been
achieved by minimizing or eliminating the design
phase. In addition, the generally lower quality of such
a system will also have a significant impact during the
operation and maintenance phase, which past
experience indicates is where the majority of project
time and money is typically spent. During that phase,
the added cost incurred when required to implement
changes to a poorly designed system will further
diminish any temporary gains that may have been
achieved by overlooking design in the early stages of
the project.

Once the design phase has been completed, the code is
then generated during the implementation phase, and
subsequently checked for correctness during the test
phase. At this point in the process, a common
approach is to build small pieces of code, test these
pieces individually, then gradually aggregate them into
larger and larger pieces, which are each tested
individually before being combined with other pieces
and tested. Throughout the entire process, test plans,
procedures, and results are documented and controlled,
thereby providing not only a record of the verification
process itself, but also providing the requisite
traceability and repeatability in the event that errors are
found and modifications to the modules become
necessary.

AIAA-99-0248

4
American Institute of Aeronautics and Astronautics

CONCEPT
EXPLORATION

REQUIREMENTS
(ANALYSIS)

DESIGN

IMPLEMENTATION

TEST

INSTALLATION
AND

CHECKOUT

OPERATION
AND

MAINTENANCE

RETIREMENT

Project Phase Artifacts/Outputs Purpose

Statement of Needs,
Feasibility Studies,
System Definition,

Procedure and Policies
(Plans)

Requirements Specification,
System and Acceptance Test

Plan

Design Document,
Component and Integration

Test Plans

Source Code and Doc,
Component, Integration and

System Test Procedures,
Component Test Reports,

User Documents, Test Cases

Acceptance Test Procedure,
Version Description Document,

Integration, System, and
Acceptance Test Reports,

Release Source Code and Doc

Installation Configuration
Audit, Verification and

Validation Final Report,
Anomaly Reports

Anomaly Reports,
Change Requests

User needs described and evaluated

Required system capabilities defined
and documented

Designs for architecture (structure),
software components, interfaces, and
data are created, documented, and
verified

Using design documentation,
software system created and
debugged

Software product integrated and
evaluated to determine whether or
not requirements have been satisfied

Software product integrated into
its operational environment and
tested in this environment to
ensure it performs as required

Software product employed in its
operational environment, monitored
for satisfactory performance, and
modified as necessary to correct
problems or respond to changing
requirements

Support for software product
terminated

Figure 2. An "Ideal" Software Development Process

AIAA-99-0248

5
American Institute of Aeronautics and Astronautics

The need for such a high degree of rigor at this stage
of the process can best be understood by
consideration of the concept of regression testing.
The IEEE defines regression testing as “selective re-
testing of a system or component to verify that
modifications have not caused unintended effects and
that the system or component still complies with its
specified requirements.”4 This definition helps to
point out an unfortunate, and often overlooked,
characteristic of software development: it is quite
easy and, in fact, quite common to make an
ostensibly simple change to a software module, and
have that change cause unintended side effects
(a.k.a., bugs) - sometimes in parts of the system far
removed from the original location of the change.
Therefore, in order to ensure that late changes do not
adversely impact either the modified or the
unmodified portions of a system, it is essential to
have both a well thought-out approach to regression
testing and the ability to repeat prior tests and
reproduce prior results. The regression testing
philosophy on a project, and the process established
to implement this philosophy, are thus important
elements of the software development process, and
necessitate a certain level of planning and
documentation for proper implementation.

With the testing phase complete, and the software
successfully delivered and installed, the system is
then considered to be in the operation and
maintenance phase. During this phase, an existing
system is modified either to correct problems that
have been uncovered after delivery of the software or
to make changes in response to new requirements.
The desired changes are typically documented using
anomaly reports and/or change requests, and these
are then carefully reviewed prior to making any
actual changes to the system's documentation or
code. Although all changes made at this point are
considered to be part of the operation and
maintenance phase, the process used to implement
these changes consists of essentially the same set of
steps described above and used during the original
development effort. Therefore, the operation and
maintenance phase can actually be viewed as
consisting of repeated implementations of the various
stages of the waterfall model.

Software Process as Applied to Icing
Simulation Development

Although the standard development process
described above can be adapted for use in a variety of
situations, there are certain characteristics of the
general research environment that are not entirely
consistent with this more rigorous approach.
Likewise, there are also aspects of the icing
simulation development domain that are not
altogether compatible with the use of more

formalized procedures. As with any improvement
activity, therefore, when attempting to apply standard
techniques to a specific environment in an effort to
evolve toward a more disciplined approach, it is
important to factor in both the distinguishing
characteristics of the environment and their
consequences for software development. If careful
consideration is not given to the unique qualities and
standard operating procedures of the organization, it
is likely that the changes made either will not address
the most critical concerns or will not prove to be a
good fit for the organization. If this occurs, new
approaches implemented will be unlikely to produce
the desired results, as they will most likely either be
unrelated to the main issues of the organization or so
foreign as to eventually be discarded in favor of the
original, more familiar, practices. In either case, the
improvement initiative will have failed.

The Research Development Environment

In many research-oriented organizations, an emphasis
is placed on individuality, creativity, and flexibility in
order to provide an environment where new ideas
will flourish and unique approaches can easily be
pursued. In this type of environment, an individual
researcher often works independently, pursuing a
particular area of interest at the exclusion of other
areas. Frequently, the researcher's reputation and
perceived value to the organization are based
exclusively on the unique knowledge and expertise
that he possesses.

When the work performed in an environment such as
this includes the development of analytical software
for an external user community, however, the
emphasis on individuality, creativity, and flexibility,
which is so beneficial from a purely scientific stand-
point, has some distinct drawbacks. The reasons have
to do, in large part, with the basic nature of software.

Software systems are among the most complex
systems ever conceived, based upon principles of
human logic rather than on the natural sciences.
Because of this, the results obtained when building a
software system are especially dependent upon the
skills of those doing the development. If, as is often
the case in a research environment, only one
individual is responsible for and knowledgeable
about this development, then the quality and
functionality of the system will be based entirely
upon the capabilities and knowledge of that
individual. This would represent a significant risk
even in the best of circumstances; however, in the
research development environment, where "research"
is generally the first concern, and "development" a
distant second, software systems are likely to be
regarded as simply a tool of the researcher, and the
methods used to develop them given little
consideration. Non-software products (consider, for

AIAA-99-0248

6
American Institute of Aeronautics and Astronautics

example, a bridge or a car) developed without
concern for the process used would commonly be
expected to be of poor quality, and a similar
expectation in the case of software is certainly not
without justification. In fact, on the contrary, the
inherent complexity and logic-based nature of
software suggest the likelihood of even more serious
consequences in that event.

The potential risk relative to both software system
content and quality, however, is further exacerbated
by the fact that, in this environment, very little about
the software tends to be documented. This is most
likely a consequence of both the lack of emphasis
placed on standard software development methods, as
described above, and the generally individualistic
nature of the research environment. In this type of
environment, where one individual is solely
responsible for a system and has the freedom to make
all decisions unilaterally, the need to document
information in order to communicate it to others is
minimized. With this being the case, critical
information about the system is often contained only
in the mind of the developer. This not only puts the
organization at risk in the event that this uniquely
informed individual should happen to leave the
organization - taking all of his knowledge and
expertise with him - but it also has other less drastic,
although nevertheless significant, implications.

One such implication is that, when basic information
about the system is not documented - e.g., system
capabilities, specific approaches selected or rejected,
the rationale for various decisions, etc. - it becomes
very difficult, if not impossible, for other members of
the staff or the general user community to review this
information. Furthermore, without a structured
process for critically reviewing implementation
decisions and providing feedback to the developer,
any external input that is provided will necessarily be
provided in an informal, after-the-fact fashion.
Often, this will be after the completed system has
already been delivered to the users. Any changes
made at that point will then most likely be
incorporated into the system using the same
unstructured process. This is especially true in a
research environment, where the developer is
unlikely to be particularly familiar with or concerned
about software system design concepts. Although a
system developed using this type of undocumented,
patchwork approach may well have certain good
features, it is not likely to be a cohesive, high quality
system - and whatever qualities it does have, "only
the developer knows for sure!"

Another inevitable consequence of this
individualistic, informal approach to software
development is that, when only one individual has the
appropriate knowledge to be able to work on a
system, the timing and content of any release of that

system are necessarily tied to that individual's
schedule. Therefore, in contrast to a well-managed
production software project, which has pre-
established deliverables and milestones and uses an
appropriately-sized team to meet those objectives, the
typical analytical software system produced in a
research environment has deliverables and milestones
that are based on the individual developer's schedule.
In this situation, common practice is to simply release
system updates as they are completed - although
without associated documentation or controls in place
to clearly distinguish between different versions, it is
not possible to know with absolute certainty which
updates are contained in which version. This can
quickly lead to confusion within the user community,
and potentially even for the researcher himself,
resulting in the classic "quality control problem."

The Icing Simulation Development Environment

Although the issues associated with the general
research environment described above apply to the
icing simulation environment as well, there are
additional issues specific to the icing domain that
must also be considered. These issues essentially
reflect the state-of-the-art of icing simulation code
development which, at the present time, is
particularly lacking in two fundamental,
interconnected areas - determination of system
requirements and specification of system acceptance
criteria. The deficiencies in these areas of the icing
simulation development process are, at least in part,
due to three basic difficulties associated with the
modeling process for icing phenomena:

(1) Uncertainty in understanding of the physical
processes

Although this is not an area of difficulty that is
unique to the modeling of icing phenomena, it
nevertheless has significant consequences with
respect to both determining system requirements
and establishing system acceptance criteria. The
reason for this is straightforward. Logically, if
one does not understand the basic phenomena
being modeled, it will be difficult to develop an
accurate model; and if a detailed, accurate model
cannot be developed, implementing the model in
code such that it accurately reflects reality will
be even more difficult.

An example of this situation in the area of icing
simulation code development is the coefficient
for convective heat transfer over a rough surface,
which plays a critical role in the determination of
the amount of incoming supercooled water that
changes to ice during a given time increment.
Unfortunately, information indicating precisely
what this coefficient should be is limited, and
thus the determination of requirements and the
creation of appropriate testing procedures to

AIAA-99-0248

7
American Institute of Aeronautics and Astronautics

verify this aspect of the code are especially
difficult.

(2) Inability to obtain information for testing of
numerical models of the physical processes

In addition to uncertainties in the creation of
physical models, there can arise difficulties
associated with testing the accuracy of those
models resulting from a lack of available data.
This can be due to deficiencies in measurement
capabilities or to a lack of resources necessary to
obtain the appropriate information.

If data is unavailable for evaluation of a software
system or its subsystems, then the acceptability
of the software is based on the judgement of the
developer. This tends to make that element of
the software only as good as the experience of
the developer. Additionally, there is then no way
to assess the impact of that software element on
the accuracy of the overall system. The
developer is left to examine influences of
subsystems on the overall product by running
parametric studies. If the number of such
subsystems is small, then there is a chance of
determining how any given intermediate result
should behave in a system that is operating
correctly. If however, as is more commonly the
case, the number of such unverified subsystems
is large, then attempting to understand what
result any one subsystem should be producing
becomes impractical.

(3) Complexities in the numerical representation of
the physical processes

Finally, even if the physical process being
modeled is well understood and there is
suff ic ient information avai lable for
comprehensive testing, there can arise
difficulties associated with the transformation of
the defining equations of the process into the
numerical algorithm required to solve those
equations. This is the typical focus of much of
the work in the field of computational simulation
of the field equations of continuum dynamics.

Typically, an equation is developed that
represents the physical process of interest and
this equation, or set of equations, cannot be
solved through means of mathematical analysis.
As such, numerical representations of the
governing equations are developed which allow
approximations of the solutions to be calculated.
The accuracy of the approximations are
dependent on the methods used to develop the
numerical representations of the original
equations, the terms in the equations that are
neglected, and the methods used to solve the new
numerical representations of the governing
equations.

Depending on the nature of the numerical
equations and on the methods used to solve
them, more problems of the type described above
in item (2) can arise due to a lack of knowledge
with respect to intermediate results obtained
during the course of the overall calculation
procedure.

It is the goal of the research effort to address these
three problems while creating a software system that
is usable, reliable, and accurate. Unfortunately, the
aspects of ice accretion computational simulation
described above can lead to difficulty in utilizing
ideal software development techniques to produce a
system with these desired qualities. Given this, the
inherent deficiencies in our understanding of icing
phenomena can be addressed in two ways. The first
is to factor these elements into the specification of
appropriate requirements, and the second is to
develop a process for continual improvement of the
software in a controlled manner. With this in mind,
the LEWICE development team has identified
several goals for process improvement that will lead
to a more managed software development
environment and to a LEWICE code that has the
desired quality attributes.

Improvement Initiative Goals

As previously indicated, in an effort to address the
issues discussed above, the NASA Lewis Icing
Branch in collaboration with the Engineering Design
and Analysis Division has recently begun a software
process improvement initiative. The intent of this
initiative is to improve code quality, as well as the
overall software development environment, by
incorporating appropriate new approaches into the
icing simulation development process. To that end,
specific "process goals" have been established to
guide the improvement effort. These process goals
represent the means by which the ultimate end goal
of high quality software produced within a
controlled, predictable environment will be achieved.

For the reasons mentioned earlier, the process goals
for this activity are based both on the unique
attributes and priorities of the organization and on the
standard recommendations of software process
improvement practitioners. In the latter case, the
primary source of information and guidance is the
Capability Maturity Model for Software (CMM), a
detailed roadmap for software process improvement
developed by the Software Engineering Institute
(SEI) at Carnegie Mellon University.8

Process Goal 1: "Institutional Knowledge"

One of the fundamental concepts expressed in the
CMM is the idea that, only with appropriate
documentation, is it possible for an organization to
repeat or improve upon past successes. Otherwise,

AIAA-99-0248

8
American Institute of Aeronautics and Astronautics

the success or failure of any particular project is
based entirely upon the individual skills and
dedication of those who happen to be involved in the
project. This latter situation represents "individual
knowledge," as contrasted with "institutional
knowledge," which is knowledge that is available to
any member of an organization and which outlives
any given individual's association with that
organization. The required documentation is
twofold: first is the technical information such as
system requirements and design, and second is the
documentation of project plans and procedures.
Explicitly defining both types of documentation not
only provides the basis for process improvement, but
is also a key element of any team-based activity,
since these documents specify the information
necessary for coordination amongst team members.
It is imperative, however, not to neglect any facet of
this documentation, as to do so would ultimately
impair the organization's ability to repeat successful
practices or implement relevant improvements.

Process Goal 2: Use of a Team-Based Approach

The use of a team-based approach for software
development provides several advantages over the
typical individualistic approach often used in a
research environment. Some of these advantages are
simply a consequence of the sharing of knowledge
and workload that occurs with the use of a team. For
example, from an organizational perspective, a team-
based approach spares the organization the risk of
relying on a single individual's ability and availability
in order to complete a project. On the other hand,
from the individual developer's perspective, this
approach helps to prevent the stress and schedule
pressure that result from having sole responsibility
for the release of a software system.

An additional advantage of this approach is that, by
having multiple individuals with diverse backgrounds
and capabilities working on the same project, the
overall system quality can be greatly enhanced, as
each team member can bring unique knowledge and
skills to the project.

Process Goal 3: Use of Software Formal
Inspections

Software Formal Inspections are essentially well
defined, structured meetings where project work
products are reviewed in an effort to remove defects.
They have, without exception, been found to enhance
software system quality and reduce costs - especially
when used often and early in a project. If handled
appropriately, inspections can also help to ensure that
desired capabilities are incorporated into a system,
and that the best approaches for implementing and
verifying those capabilities are used.

Process Goal 4: Preparation of a Flexible, Well
Thought-Out, Well-Structured
Design

Although a good design is a basic requirement of any
high quality software system, the uncertainties that
currently exist in the icing simulation modeling
process, as well as the overall complexity of the
process, make a well-planned, flexible design all the
more critical. Given the continually changing state of
knowledge within the icing research field, it is not
sufficient to simply build a system that incorporates
well-understood features currently desired by the user
community. Instead, it is important to build a system
that can also be easily updated to incorporate new
capabilities and techniques without compromising the
existing system. This is accomplished by taking the
time to prepare a carefully thought-out, well-
structured, flexible design, which allows for
modifications to the system with a minimum of
impact.

Process Goal 5: Application of Rigorous Software
Management Practices

In addition to the critical importance of
documentation, another fundamental principle
expressed in the CMM is the concept that, without
management discipline on a project, any engineering
improvements will likely be sacrificed to schedule
and/or cost pressures at the first sign of trouble. For
this reason, it is important to tackle management
issues early in a process improvement initiative if
other changes are to endure.

The types of activities that must occur in order to
bring management discipline to a project are
described in the CMM as follows:

"…software managers for a project track software
costs, schedules, and functionality; problems in
meeting commitments are identified when they arise.
Software requirements and the work products
developed to satisfy them are baselined, and their
integrity is controlled. Software project standards are
defined, and the organization ensures they are
faithfully followed. The software project works with
its subcontractors, if any, to establish a strong
customer-supplier relationship."8

Process Goal 6: Implementation of Pilot Activities
and Application of Lessons
Learned to Future Icing Branch
Projects

During the first phase of this initiative, establishing
appropriate processes for use during the development
of the LEWICE software, and improving the
LEWICE code quality, are without question
important objectives with intrinsic value of their own.
However, from the standpoint of the process
improvement initiative, these activities are also being

AIAA-99-0248

9
American Institute of Aeronautics and Astronautics

used to gain experience in implementing this type of
effort in an icing simulation development
environment. The intent is to then make use of this
experience and, in the future, apply the lessons
learned to similar activities on the remaining Icing
Branch projects.

The LEWICE Pilot Project

Based on the goals and principles outlined above, an
in-house effort aimed at defining processes for
software management and development was begun.
Using the existing version of LEWICE as the starting
point for a pilot project, a team was assembled to
identify the most critical areas to tackle and the
specific processes that were needed. The team
consisted of icing code developers and software
management experts, in order to incorporate
knowledge of the software, goals of the developers
for software improvement, and an understanding of
the processes required to achieve those goals.

Since the effort began with an existing version of
LEWICE, it is important to note that this activity
actually began in the maintenance phase of the
software life cycle. However, the original code was
developed without the use of rigorous software
principles as described above, and hence most of the
artifacts that would normally have been created along
the way did not exist. With this being the case, it
would have been an overwhelming task to attempt to
re-create all of the missing documentation at once
during the early stages of the activity. In addition, as
the software was not developed using the standard
approach described above, there were also other
changes that could be made to improve the quality of
the code itself. Therefore, priorities had to be
established which balanced all possible efforts
against the existing time constraints for the project.
To do this, it was necessary to consider, once again,
the overall life cycle and the various artifacts
typically associated with each phase as compared
with the current state of the LEWICE software.

As was described previously (see Figures 1 and 2,
above), the standard software development life cycle
begins with concept exploration, which is then
refined during the next phase into system
requirements. In the case of LEWICE, although
requirements for the software had obviously been
determined to some level, as code had been created,
these requirements were never documented. For the
current activity, although the team decided that it
would be necessary to document requirements prior
to formal testing, it was determined that this explicit
definition of requirements should be delayed initially
in favor of focusing on the design and
implementation aspects of the existing code. This
approach could provide two major advantages. First,
it would result in more immediate benefits to the user

community; and second, it would aid team members
in obtaining a more thorough understanding of the
code prior to the definition of requirements. It was
also apparent that there was an urgent need for
configuration management processes and tools, in
order to help manage the release process and to
control the proliferation of versions that had caused
serious problems in the past. Therefore, this also was
selected as an area to be addressed early in the
project.

Based on the above decisions, work then began
immediately on these high priority tasks. With
respect to code design and implementation, an effort
was made to restructure the code to make it more
accessible to anyone who might be called upon to
work with it. Specifically, elements such as common
blocks, argument lists, read/write statements,
namelists and declaration statements were modified
to have a consistency in structure throughout all of
the subroutines in the code. Prologs, or module
headers, were created to provide standard information
about each subroutine within the code listing itself.
(The prolog template used to insert this information
can be found in the appendix of this paper.)
Additionally, mundane elements of the code such as
subroutine names and variable names were altered to
reflect a naming convention agreed to by the team.
Finally, subroutines were made more modular and
were restructured to be more logically connected in
terms of their function within the operational flow of
the code. As a result, the code has become better
organized and in a condition more amenable to
further development.

In conjunction with the above code modifications, a
LEWICE Software Development Standards
document was also created. This document currently
consists of the LEWICE Coding Standard, the
LEWICE Development Practices, and the LEWICE
Automated Revision Control Procedure, although
additional sections may be added, as required, over
the course of the project. The first section of the
document, the Coding Standard, contains
specifications for filling in module prologs, naming
conventions for the various elements of the code, and
other code-specific requirements. The Development
Practices section contains general development
guidelines established to provide a consistent
programming philosophy and to ensure this
consistency across all phases of the project and
amongst all team members. The Automated Revision
Control Procedure contains detailed instructions for
use of the RCS automated revision control system,
including information on the specific commands and
directories to be used and the low-level processes
required in order to access the system. The totality of
this information is intended for use by all code
developers in their daily efforts.

AIAA-99-0248

10
American Institute of Aeronautics and Astronautics

In addition to the Software Development Standards, a
LEWICE Software Configuration Management Plan
is also currently under development. This Plan
contains the specifics on configuration management
activities such as configuration identification, control,
audit and review, and also details project
configuration management responsibilities. The
purpose of a configuration management plan is to
define the programmatic aspects of how the software
and its associated documentation are to be controlled,
as well as how new versions are to be released. The
Plan is intended for use by all project team members
in the quest for overall control of the software
development effort.

With work on the above tasks sufficiently underway,
system testing issues were then addressed. Among
the different types of testing approaches possible, one
method of validating LEWICE results was to check
them against experimental results obtained from
actual tests run in the Lewis Icing Research Tunnel.
This work has recently been conducted for a broad
range of icing conditions and has been reported by
Wright.9 While this was a significant step in the
process of validating simulation results with real test
cases, it is not sufficient to confirm that the
simulation code properly performs all of its intended
functions.

In order to verify that the software is acceptable in
this regard, it is necessary to generate a set of test
cases that cover the basic software functions and
which can be used in regression testing. This test
suite must be developed in relation to actual
requirements in order to verify proper operation of
the code relative to the required functions. Before
such a test suite can be developed for LEWICE,
therefore, a comprehensive set of requirements must
first be defined. Work on these requirements has
now begun and will be one of the most significant
accomplishments of this activity.

Process Improvement Project Status

For purposes of obtaining a better understanding of
both the overall progress to date and the tasks that
remain to be accomplished in the future, a
comparison of the individual improvement initiative
goals versus the specific activities either
implemented, in progress, or planned is provided
below.

The first goal, institutional knowledge, is concerned
with the availability of relevant documentation,
which includes system requirements and design as
well as project plans and procedures. This goal is
being addressed at the present time by documenting
and implementing the LEWICE Software
Development Standards and the LEWICE Software
Configuration Management Plan, and by preparing

the LEWICE Software Requirements Specification.
In addition, once the Requirements Specification is
complete, the LEWICE Software Test Plan and Test
Procedures will be developed. This testing
documentation will be used both for formal system
testing and to ensure repeatability of results when
future modifications to the LEWICE code are made.
The entire set of documents will then form the
foundation upon which future improvements to
LEWICE can be built, and will also serve as
examples for other software development projects
within the Icing Branch. Furthermore, once the
documented processes have been put into practice on
an everyday basis, they will then be evaluated as to
their good and bad points, and updated accordingly.
In this way, both the product and the process used to
prepare the product can sustain continuous
improvement.

Progress toward the second goal, use of a team-based
approach, is indirectly being made via the
development of the Requirements Specification.
Once an initial version of this document has been
prepared, other knowledgeable individuals, whether
at Lewis Research Center or in the broader icing
research community, can then be involved in the
refinement of requirements and design approaches.
This goal thus leads directly to the third goal, use of
Software Formal Inspections. Although formal
inspections are just one means of obtaining input, by
using a highly structured technique such as this, one
can facilitate discussions on features and
implementation approaches. However, as with any
team-based activity, such formalized discussions are
only possible after preparing the necessary
documentation. For the LEWICE project, current
plans indicate that requirements documentation
should be available in the very near future.
Therefore, to further the above goals, a training
session on Software Formal Inspections has been
planned for early 1999. Following the training,
formal inspections can then be held to review
portions of this requirements documentation, as
appropriate.

In addition to the need for documented technical
information, however, meaningful progress toward
team-based activities also requires a certain level of
control and standardization that can only be achieved
with the implementation of rigorous management and
development processes. Without the coordination of
information and activities amongst team members
that a well-structured environment provides, attempts
to implement a team-based approach or to utilize
Software Formal Inspections will not achieve the
benefits that would otherwise be expected.
Therefore, implementation of the LEWICE Software
Development Standards and the LEWICE Software
Configuration Management Plan are important steps

AIAA-99-0248

11
American Institute of Aeronautics and Astronautics

in the effort to move toward a team-based approach.
In the future, integration of rigorous requirements
management practices into the process will further
enhance the outcome of this approach.

The fourth goal, preparation of a flexible, well
thought-out, well-structured design, has been
addressed in a preliminary fashion by providing icing
researchers with introductory experience in two
commonly utilized design techniques: data flow
modeling and PDL-based module specification.

The first technique, data flow modeling, is a
graphical method used to depict the flow of data
through a software system. This technique is
particularly helpful in identifying how best to
subdivide a system into cohesive components, and
can be used to aid in the requirements specification
and/or system design process. In the case of the
existing LEWICE system, top level data flow
diagrams have been developed (see Figures 3 and 4)
as a means of defining the appropriate structure to be
used in specifying current LEWICE system
requirements. This activity has not only provided
valuable experience with data flow modeling, but has
also aided in the development of a well-organized
Requirements Specification. In so doing, it has also
helped to lay the foundation for future requirements
definition and design specification activities on the
project.

The second technique, PDL-based module
specification, has also been utilized on a trial basis on
the LEWICE project. This was done in order to gain
experience in using the structured language approach
to module specification and to evaluate the usefulness
of this approach relative to future development
efforts. For this initial effort, however, it was readily
apparent that, to attempt to apply this technique to all
of the existing subroutines of LEWICE would not
only have been an immense job, but would also have
been extremely difficult given the inherently
unstructured nature of the modules. This being the
case, as PDL is primarily a design technique, use of
PDLs solely for the purpose of documenting existing
modules was not felt to be a reasonable course of
action.

All the same, structured design techniques will be
applied during future Icing Branch development
efforts. Initially, these will be efforts associated with
modules being redone for future versions of
LEWICE; later, they may be for modules associated
with entirely new software development efforts. As
of this point in time, a recreation of several LEWICE
modules using the above techniques is already
planned, and will provide project team members with
additional opportunities to become familiar with
these methods.

Progress on goal five, application of rigorous
software management practices, has already begun
with the enumeration of software standards, plans,
and procedures in our current documentation. In the
future, management practices will be supplemented
by adding metrics and tracking activities to improve
understanding of the development process and to be
better able to create reasonable development
schedules. In addition, an increased emphasis on the
requirements process is planned. These activities
will be ongoing throughout the development effort.

The sixth goal, implementation of pilot activities and
application of lessons learned to future Icing Branch
projects, has been addressed in part by virtue of the
work accomplished to date on the LEWICE project.
In the future, as controlled processes and planned
activities are piloted on LEWICE, these new
approaches will then be used as the basis for adopting
the same or similar techniques on other Icing Branch
projects. This process improvement activity is thus
the beginning of a new way of doing business in a
research environment, and can be seen as forging a
new link between two groups who have traditionally
worked in very different ways.

Concluding Remarks

This project ultimately has as its goal the
development of a high quality, user-friendly, robust
software system. The application of software
management practices to an existing research
analysis tool has led to interesting adaptations of
these practices in order to work toward the project
goal and utilize the resources and talents available
within the desired time frame. One of the more
important lessons learned from this effort so far has
been that this is an ongoing process.

This paper has been written to indicate progress made
to date and to suggest areas where further work is
needed, both with respect to the current version of the
LEWICE code and for future code development
efforts. The first and most important outcome of this
project has been to comprehend the implications of
applying software management processes to the
creation and development of research software
systems and to identify how these processes can best
be applied to the LEWICE ice accretion code. That
is, the software development life cycle described
above dictates specific activities that must be
undertaken to develop, verify, and maintain any large
software product. Our development team has
employed this waterfall life cycle model to plan and
undertake the efforts needed to improve the usability
and reliability of the LEWICE code.

AIAA-99-0248

12
American Institute of Aeronautics and Astronautics

LEWICE

USER

TRAJECTORY
MODULE

OUTPUT FILES

ENERGY / MASS
BALANCE

OUTPUT FILES

FLOW OUTPUT
FILES

ICE SHAPE
OUTPUT FILE(S)

LOG FILES
PLOT DATA

OUTPUT FILES

OPTIONAL
INPUT FILES

GEOMETRY
INPUT FILE(S)

GENERAL
PURPOSE
INPUT FILE

HEAT
TRANSFER

DATA OUTPUT
FILE

Display_Data

Display_
Messages

Flow_Output_
Values

Heat_Transfer_
Coefficients

Wrap_Distance

Collection_Efficiency

Roughness_Output_Data

Density_Data

Temperature_Data

Energy_&_Mass_Balance_Data

Ice_Shape Data

Supplemental_
Output_Data

Debug_
Data

Plot_
Data

Deicer_
Data

Grid_
Data

Grid-Based_
Flow_Data

Collection_
 Efficiency

Heat_Transfer_
Input_Data

Body_Coordinates

Basic_Input

Keyboard_
Input Droplet_

Trajectory_
Coordinates

Froesling Number

Impingement_Limits

Incremental_Ice_Height

 Figure 3. LEWICE Context Diagram

Figure 4. LEWICE Top Level Data Flow Diagram

Perform
Flow Field
Analysis

Perform
Trajectory
Analysis

Perform Icing
Thermodynamic

Analysis

Perform
Geometry

Modification

Perform
User Interface

Functions

D
is

pl
ay

_D
at

a

* Geometry *
Data

* Geometry *
Data

Perform
Operational
Initialization

Ic
e_

S
ha

pe
_D

at
a

Control_Parameters

Control_Parameters
Body_

Coordinates

Velocity_
Location_
Request

Control_
Parameters

Keyboard_
Input

Stagnation_Points

Flow_Output_Values

Velocity_Location_Request

Body_
Coordinates

K
eyboard_

Input

Flow_Output_
Values

D
is

pl
ay

_M
es

sa
ge

s

Ice_Mass

Heat_Transfer_
Coefficients

Froesling_Number

Roughness_
Output_Data

Energy_&_Mass_
Balance_Data

* Geometry *
Data

Temperature_
Data

Control_Parameters

Velocities

Density_Data

Impingement_Limits

Collection_Efficiency

Droplet_Trajectory_
Coordinates

Incremental_
Ice_Height

Ice_Shape_
Data Wrap_Distance

Ice_Shape_Data

Plot_Data

Plot_Data

Plot_Data

Plot_Data

Debug_Data

Debug_Data

Debug_Data

Debug_Data

S
up

pl
em

en
ta

l_

O
ut

pu
t_

D
at

a

Basic_Input

B
od

y_
C

oo
rd

in
at

es

Deicer_Data

Grid_Data
Grid_Based_
Flow_Data

Heat_Transfer_
Input_Data

Body_Coordinates

Body_Coordinates

Basic_Input

Collection_Efficiency

Collection_
Efficiency

Body_Coordinates

AIAA-99-0248

13
American Institute of Aeronautics and Astronautics

To date the team has accomplished the following:

• Formulation of a LEWICE Software
Development Standards document which
consists of a Coding Standard, Development
Practices, and Automated Revision Control
Procedures. This document describes the current
procedures to be used for construction and
maintenance of the LEWICE software

• Development of a baseline version of the code
which conforms to the majority of the Coding
Standard provisions. This effort consisted of
restructuring of subroutines, regrouping of
common blocks, consistent implementation of
naming and numbering schemes, enhanced
modularization, and creation of prologs for each
subroutine

• Testing of the baseline version for range
capabilities and current ice shape modeling
capability by comparison to a large database of
experimental ice shape tracings

• Implementation of team-based planning and
development efforts

• Implementation of an automated revision control
system to archive and track versions of project
work products, and to assist in the
implementation of the project's overall
configuration management process

Further work is needed and is indeed planned to
apply all of the elements of the waterfall model to the
LEWICE code. As such, the team is currently or will
in the near future undertake the following activities.

• Development of a Software Configuration
Management Plan which will contain specific
information on configuration identification,
control, audit, and review. The plan will also
detail project configuration management
responsibilities

• Preparation of a LEWICE Software
Requirements Specification document to define
the expected capabilities of the LEWICE
software and to form the basis for formal system
testing and future code modifications

• Implementation of Software Formal Inspections
to aid in the review of project work products and,
in particular, to ensure compliance of the
software with specified requirements

• Preparation of a LEWICE Software Test Plan
and Test Procedures to be used to verify that the
LEWICE software meets all specified
requirements

• Performance of formal system acceptance testing
according to the documented procedures

• Implementation of changes to the LEWICE code
as required to ensure that the released system
satisfies all specified requirements and that the
code conforms to all provisions of the Coding
Standard

While there is still much to be done, the LEWICE
software is currently more reliable and under better
control than when this project was initiated. It is the
expectation of the authors that the methods outlined
in this paper will continue to be refined and applied
and that the lessons learned from this pilot project
will guide us in future software development
projects. It is now clear that, with activities of this
sort, the participants are embarking on a continual
journey.

References

1. Ruff, G.A. and Berkowitz, B.M., “User’s Manual
for the NASA Lewis Ice Accretion Prediction
Code (LEWICE),” NASA CR 185128, 1990.

2. Wright, W.B., “Update to the NASA Lewis Ice
Accretion Code LEWICE,” NASA CR 195387,
Oct. 1994.

3. Wright, W.B., “User’s Manual for the Improved
NASA Lewis Ice Accretion Code LEWICE 1.6,”
NASA CR 198355, June 1995.

4 . "IEEE Standard Glossary of Software
Engineering Terminology," IEEE Std 610.12-
1990, IEEE Software Engineering Standards
Collection, Sept. 1994.

5. Ruff, G.A., and Anderson, D.N., “Quantification
of Ice Accretions for Icing Scaling Evaluations,”
AIAA Paper 98-0195, Jan. 1998.

6. Wright, W.B., and Potapczuk, M.G.,
"Comparison of LEWICE 1.6 and LEWICE/NS
with IRT Experimental Data from Modern
Airfoil Tests," NASA Contractor Report, Jan.
1997.

7 . "IEEE Recommended Practice for Software
Requirements Specifications," IEEE Std 830-
1993, IEEE Software Engineering Standards
Collection, Sept. 1994.

8. Paulk, Mark C. et al, "Capability Maturity Model
for Software, Version 1.1," CMU/SEI-93-TR-24,
Feb. 1994.

9 . Wright, W.B. and Rutkowski, A., “Validation
Results for LEWICE 2.0,” to be published as a
NASA CR, 1999.

AIAA-99-0248

14
American Institute of Aeronautics and Astronautics

Appendix
A prolog template, reproduced below, is being used to insert documentation directly into the LEWICE 2.0 source
code listing. This standard header provides key information about each subroutine immediately prior to the code for
that routine, and is included here to illustrate the approach being used consistently throughout the code to make the
software more understandable and more manageable.

CC
C
C module_name [- one-line description of module function]
C
CC
C
C Purpose:
C
C
C Input Data:
C
C Output Data:
C
C File:
C
C Module Header:
C
 executable subroutine/function statement
C
C Argument List:
C
C Argument Name Type Use Description
C --------------- ---------- --- ----------------------------------
C
C
C
C Global Variables:
C
C Common Name Variable Name Type Use Description
C ----------- --------------- ---------- --- ---------------------
C
C
C
C Primary Local Variables:
C
C Variable Name Type Description
C --------------- ---------- ---------------------------------------
C
C
C
C External References:
C
C Module Name File
C --- --------------
C
C
C
C Invoking Routines:
C
C Module Name File
C -- --------------
C
C
C Development History:
C
C Author Date Description of Change
C -------------------- ---------- ----------------------------------
C Original version
C
C Notes:
C

This publication is available from the NASA Center for AeroSpace Information, (301) 621–0390.

REPORT DOCUMENTATION PAGE

2. REPORT DATE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Form Approved

OMB No. 0704-0188

12b. DISTRIBUTION CODE

8. PERFORMING ORGANIZATION
 REPORT NUMBER

5. FUNDING NUMBERS

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

16. PRICE CODE

15. NUMBER OF PAGES

20. LIMITATION OF ABSTRACT

Unclassified Unclassified

Technical Memorandum

Unclassified

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135–3191

1. AGENCY USE ONLY (Leave blank)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546–0001

January 1999

E–11497

WU–548–20–23–00

21

A03

Software Development Processes Applied to Computational Icing Simulation

Laurie H. Levinson, Mark G. Potapczuk, and Pamela A. Mellor

Ice formation; Aircraft icing; Software engineering; Reverse engineering; Simulation

Unclassified -Unlimited
Subject Categories: 02 and 61 Distribution: Nonstandard

NASA TM—1999-208898
AIAA–99–0248

Prepared for the 37th Aerospace Sciences Meeting & Exhibit sponsored by the American Institute of Aeronautics and
Astronautics, Reno, Nevada, January 11–14, 1999. Responsible person, Laurie H. Levinson, organization code 7760,
(216) 433–2663.

The development of computational icing simulation methods is making the transition from the research realm to common-
place use in design and certification efforts. As such, standards of code management, design, validation, and documenta-
tion must be adjusted to accommodate the increased expectations of the user community with respect to accuracy,
reliability, capability, and usability. This paper discusses these concepts with regard to current and future icing simulation
code development efforts as implemented by the Icing Branch of the NASA Lewis Research Center in collaboration with
the NASA Lewis Engineering Design and Analysis Division. With the application of the techniques outlined in this paper,
the LEWICE ice accretion code has become a more stable and reliable software product.

